

The University of Texas at Austin Electrical and Computer Engineering Cockrell School of Engineering

Fall 2022

INTRODUCTION TO COMPUTER VISION

Atlas Wang Assistant Professor, The University of Texas at Austin

Visual Informatics Group@UT Austin https://vita-group.github.io/

Many slides here were adapted from Brown CSCI 1430

Bias-Variance Tradeoff

Model Complexity

Beyond classification: Regression

Age estimation

When was that made?

IM2GPS

Beyond classification: Structured prediction

Image

Word

Source: B. Taskar

Structured Prediction

• Many image-based inference tasks can loosely be thought of as "structured prediction"

Unsupervised Learning

- Idea: Given only *unlabeled* data as input, learn some sort of structure
- The objective is often more vague or subjective than in supervised learning
- This is more of an exploratory/descriptive data analysis

Clustering

- Basic idea: group together similar instances
- Example: 2D point patterns

- What could "similar" mean?
 - One option: small Euclidean distance (squared)

 $dist(\vec{x}, \vec{y}) = ||\vec{x} - \vec{y}||_2^2$

 Clustering results are crucially dependent on the measure of similarity (or distance) between "points" to be clustered

K-Means

- An iterative clustering algorithm
 - Initialize: Pick K random points as cluster centers
 - Alternate:
 - 1. Assign data points to closest cluster center
 - 2. Change the cluster center to the average of its assigned points
 - Stop when no points' assignments change

K-Means is Fragile

- K-means algorithm is a heuristic
 - Requires initial means
 - It does matter what you pick!
 - What can go wrong?
 - Various schemes for preventing this kind of thing: variance-based split / merge, initialization heuristics

Stuck at Poor Local Minimum

Would be better to have one cluster here

... and two clusters here

Euclidean Distance Might Not be Proper

Do not underestimate clustering!!

Unsupervised Learning

• Dimensionality reduction, manifold learning

• Discover a lower-dimensional surface on which the data lives

Unsupervised Learning

- Density estimation
 - Produce samples from a data distribution that mimics the training set

"Face"

Generative adversarial networks

Continuum of supervision

Semi-supervised (labels for a small portion of training data)

Unsupervised (no labels) Weakly supervised (noisy labels, labels not exactly for the task of interest)

Supervised (clean, complete training labels for the task of interest)

Machine Learning for Single Task

- Elements of machine learning on single task
 - The problem (task/domain)
 - Training data
 - Learning algorithms
 - Trained model
 - Applying model on unseen data (generalization)

Transfer Learning

Improve Learning New Task by Learned Task

Multi-Task Learning

Dictionary Learning:

Learn Visual Words using clustering

Encode:

build Bags-of-Words (BOW) vectors for each image

Classify: Train and test data using BOWs

Recognition so far

Category:

- Is this a bedroom?
- What class of scene is this?
- Holistic features/quantization

store

forest

suburb

Instance:

- Find this specific famous building.
- Find this person.
- Local features/precise correspondence
- Often within a database of images

"Image classification is not real computer" vision... so don't be too obsessed with that"

Recognition so far

Object (category) detection:

- Find all the people
- Find all the faces
- Often within a single image
- Often 'sliding window'

Scenes have "stuff" – distribution of materials and surfaces with arbitrary shape.

- Bag of Words ok!

Objects are "things" with shape, boundaries.

- Bag of Words less ok as spatial layout is lost!

How many object categories are there?

Biederman 1987

Object Category Detection

- Focus on object search: "Where is it?"
- Build templates that quickly differentiate object patch from background patch

Challenges in modeling the object class

Illumination

Object pose

'Clutter'

Occlusions

Intra-class appearance

[K. Grauman, B. Leibe]

Object Detection Design challenges

- How to efficiently search for likely objects
 - Even simple models require searching hundreds of thousands of positions and scales.
- Feature design and scoring
 - How should appearance be modeled?
 - What features correspond to the object?
- How to deal with different viewpoints?
 - Often train different models for a few different viewpoints

General Process of Object Detection

- 1. Statistical Template in Bounding Box
 - Object is some (x,y,w,h) in image
 - Features defined wrt bounding box coordinates

Image

Template Visualization

Images from Felzenszwalb

- 2. Articulated parts model
 - Object is configuration of parts
 - Each part is detectable

Images from Felzenszwalb

3. Hybrid template/parts model

Detections

Template Visualization

part filters finer resolution

deformation models

Felzenszwalb et al. 2008

- 4. 3D-ish model
- Object is collection of 3D planar patches under affine transformation

- 5. Deformable 3D model
- Object is a parameterized space of shape/pose/deformation of class of 3D object

Why not just pick the most complex model?

- Inference is harder
 - More parameters
 - Harder to 'fit' (infer / optimize fit)
 - Longer computation
 - Need more in-domain prior knowledge
- "Bounding Box" is still practically the most popular

General Process of Object Detection

Generating hypotheses

- 1. 2D template model / sliding window
- Test patch at each location and scale

Note – Template did not change size

Each window is separately classified

Generating hypotheses

2. Voting from patches/keypoints

Implicit Shape Model by Leibe et al.
General Process of Object Detection

General Process of Object Detection

"Globally "rescore each proposed object based on whole set, to resolve conflicts (non-max suppression, context-reasoning...)

Influential Works in Object Detection

- Sung-Poggio (1994, 1998) : ~2000 citations
 - Basic idea of statistical template detection, bootstrapping to get "face-like" negative examples, multiple whole-face prototypes (in 1994)
- Rowley-Baluja-Kanade (1996-1998) : ~3600
 - "Parts" at fixed position, non-maxima suppression, simple cascade, rotation, pretty good accuracy, fast
- Schneiderman-Kanade (1998-2000,2004) : ~1700
 - Careful feature engineering, excellent results, cascade
- Viola-Jones (2001, 2004) : ~13,000
 - Haar-like features, Adaboost as feature selection, hyper-cascade, very fast
- Dalal-Triggs (2005) : ~16,000 citations
 - Careful feature engineering, excellent results, HOG feature, online code
- Felzenszwalb-McAllester-Ramanan (2008): ~4,600 citations
 - Template/parts-based blend
- Girshick et al. (2013): ~2000 citations
 - R-CNN / Fast R-CNN / Faster R-CNN. Deep learned models on object proposals.

Dalal-Triggs Object Detector

- Histograms of Oriented Gradients for Human Detection, <u>Navneet Dalal</u>, <u>Bill Triggs</u>, International Conference on Computer Vision & Pattern Recognition - June 2005
- <u>http://lear.inrialpes.fr/pubs/2005/DT05/</u>

Example: Dalal-Triggs pedestrian detection

- 1. Extract fixed-sized (64x128 pixel) window at each position and scale
- 2. Compute **HOG** (histogram of oriented gradient) features within each window
- 3. Score the window with a linear SVM classifier
- 4. Perform **non-maxima suppression** to remove overlapping or conflicting detections with lower scores

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05

Histogram of Oriented Gradients

Orientation by bins

Histograms over k x k pixel cells

– Votes weighted by magnitude

Dalal-Triggs uses a template with a **rigid form**

- Human bodies are boxed shaped
- That's why Dalal-Triggs is best known for pedestrian detection

But...is there a way to learn the spatial layout more **fluidly**?

- Might help us capture more appearance variation...
- What about faster, too? Since many positions might be "filtered"

Face detection and recognition

Challenges of Face Detection

Sliding window = tens of thousands of location/scale evaluations, especially since faces are small

- One megapixel image has ~10⁶ pixels
- ...and a comparable number of candidate face locations

Faces are also rare: 0–10 per image

- For computational efficiency, spend as little time as possible on non-face windows.
- For 1M pix, to avoid having a false positive in every image, our false positive rate must be less than 10⁻⁶

The Viola/Jones Face Detector

A seminal approach to real-time object detection. Training is slow, but detection is very fast

Key ideas: *1. Integral images* for fast feature evaluation *2. Boosting* for feature selection *3. Attentional cascade* for fast non-face window rejection

P. Viola and M. Jones. *Rapid object detection using a boosted cascade of simple features.* CVPR 2001. P. Viola and M. Jones. *Robust real-time face detection.* IJCV 57(2), 2004.

"Haar-like features"

- Binary-valued filters, computing differences of sums of intensity between two regions
- Computed at different positions and scales within sliding window
- Very fast to compute (thanks to a clever implementation trick called "integral image")

CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=801361

But these features are rubbish...!

Yes, individually they are 'weak classifiers'

Jargon: 'feature' and 'classifier' are used interchangeably here. Also with 'learner', 'filter'.

But, what if we combine *thousands* of them...

CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=801361

How many features are there?

For a 24x24 detection region, the number of possible rectangle features is \sim 160,000!

How many features are there?

- For a 24x24 detection region, the number of possible rectangle features is ~160,000!
- At test time, it is impractical to evaluate the entire feature set.
- Can we learn a 'strong classifier' using just a small subset of all possible features?

Boosting for feature selection

Initially, weight each training example equally.

Weight = size of point

Boosting for feature selection

In each boosting round:

Find the weak classifier that achieves the lowest *weighted* training error.

Raise the weights of training examples misclassified by current weak classifier.

> Weak Classifier 1

In each boosting round:

Find the weak classifier that achieves the lowest *weighted* training error.

Raise the weights of training examples misclassified by current weak classifier.

Weights Increased

In each boosting round:

Find the weak classifier that achieves the lowest *weighted* training error.

Raise the weights of training examples misclassified by current weak classifier.

Weak

Classifier 2

In each boosting round:

Find the weak classifier that achieves the lowest *weighted* training error.

Raise the weights of training examples misclassified by current weak classifier.

Weights

Increased

In each boosting round:

Find the weak classifier that achieves the lowest *weighted* training error.

Raise the weights of training examples misclassified by current weak classifier.

Classifier 3

Weak

Compute final classifier as linear combination of all weak classifier.

Weight of each classifier is directly proportional to its accuracy.

Round 3:

Exact formulas for re-weighting and combining weak learners depend on the boosting scheme (e.g., AdaBoost).

Y. Freund and R. Schapire, <u>A short introduction to boosting</u>, *Journal of Japanese Society for Artificial Intelligence*, 14(5):771-780, September, 1999.

Feature selection with boosting

- Create a large pool of features (160K)
- Select discriminative features that work well together

Final strong learner

$$h(\mathbf{x}) = \operatorname{sign}\left(\sum_{j=1}^{M} \alpha_j h_j(\mathbf{x})\right)$$
 Weak learner
window \checkmark Learner weight

– "Weak learner" = feature + threshold + 'polarity'

$$h_j(\mathbf{x}) = \begin{cases} -s_j & \text{if } f_j < \theta_j \\ s_j & \text{otherwise} \\ \end{cases}$$

'polarity' = black or white region flip $\longrightarrow s_j \in \pm 1$

 Train & choose weak learner that minimizes error on the weighted training set, then reweight

Boosting for face detection

• First two features selected by boosting:

This feature combination can yield 100% recall and 50% false positive rate

Important Features for Face Detection

3. Attentional cascade

- Chain classifiers that are progressively more complex
- Minimize *false positive rates* at each stage, not absolute error

 $F(x) = a1f1(x) + a2f2(x) + a3f3(x) \dots$

Receiver operating characteristic

Viola/Jones detector is very powerful

Question: what makes an object "segmentable"?

Objects with similar motion or change in appearance are grouped together

Common Region/Connectivity

Connected objects are grouped together

Continuity Principle

Features on a continuous curve are grouped together

Symmetry Principle

Completion

Illusory or subjective contours are perceived

What is a "good" segmentation??
First idea: Compare to human "ground truth"

No objective definition of segmentation!

 http://www.eecs.berkeley.edu/Research/Projects/CS/ vision/grouping/resources.html

Evaluation: Intersection-over-Union (IoU) with ground truth

Second idea: Superpixels

- Let's not even try to compute a "correct" segmentation
- Let's be content with an *oversegmentation* in which each region is very likely (formal guarantees are hard) to be uniform

Main approaches

- Spectral techniques
- Segmentation as boundary detection
- Graph-based techniques
- Clustering (K-means and probabilistic)
- Mean shift

K-means can be "okay" image segmentation

Images can be viewed as graphs

Graph-view of segmentation problem

Segmentation is node-labeling

Intelligent scissors

Problem statement:

Given <u>two seed points</u>, find a good boundary connecting them

Challenges:

- Make this real-time for interaction
- Define what makes a good boundary

Mortenson and Barrett (SIGGRAPH 1995) (you can tell it's old from the paper's low quality teaser figure)

Images can be viewed as graphs

Graph-view of intelligent scissors:

Assign weights (costs) to edges

Graph-view of intelligent scissors:

- 1. Assign weights (costs) to edges
- 2. Select the seed nodes

Graph-view of intelligent scissors:

- 1. Assign weights (costs) to edges
- 2. Select the seed nodes
- 3. Find shortest path between them

Graph-view of intelligent scissors:

- 1. Assign weights (costs) to edges
- 2. Select the seed nodes
- 3. Find shortest path between them

What algorithm can we use to find the shortest path?

Graph-view of intelligent scissors:

- 1. Assign weights (costs) to edges
- 2. Select the seed nodes
- 3. Find shortest path between them

What algorithm can we use to find the shortest path?

• Dijkstra's algorithm (dynamic programming)

Dijkstra's shortest path algorithm

Initialize, given seed s (pixel ID):

- cost(s) = 0 % total cost from seed to this point
- cost(!s) = big
- **A** = {all pixels} % set to be expanded
- **prev**(s)=undefined % pointer to pixel that leads to q=s

Precompute $cost_2(q, r)$ % cost between q to neighboring pixel r

```
Loop while A is not empty
1.q = pixel in A with lowest cost
2.Remove q from A
3.For each pixel r in neighborhood of q that is in A
a)cost_tmp = cost(q) + cost_2(q,r) %this updates the costs
b)if (cost_tmp < cost(r))
i.cost(r) = cost_tmp
ii. prev(r) = q</pre>
```

Graph-view of intelligent scissors:

- 1. Assign weights (costs) to edges
- 2. Select the seed nodes
- 3. Find shortest path between them

What algorithm can we use to find the shortest path?

• Dijkstra's algorithm (dynamic programming)

How should we select the edge weights to get good boundaries?

Selecting edge weights

Define boundary cost between neighboring pixels:

- Lower if an image edge is present (e.g., as found by Sobel filtering).
- 2. Lower if the gradient magnitude at that point is strong.
- 3. Lower if gradient is similar in boundary direction.

Selecting edge weights

Gradient magnitude

More Advanced Graph-based Segmentations...

The University of Texas at Austin Electrical and Computer Engineering Cockrell School of Engineering